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Abstract. In the present work we have developed an optimal coupled-cluster approximation, which can take
care of both the accuracies of the ground-state energy and the wavefunction estimates, for the ground state
of a two-state system coupled to a dispersionless boson bath. This new approach is also able to give a tight
upper bound to the ground-state energy of the system. Up to the fourth level of this approximation our
results show excellent agreement with the numerical exact diagonalization results. In particular, our results
suggest no discontinuous localization-delocalization transition of the two-state system. This is consistent
with the exact result.

PACS. 73.40.Gk Tunneling – 73.20.Jc Delocalization processes – 74.50.+r Proximity effects, weaklinks,
tunneling phenomena, and Josephson effets

1 Introduction

In terms of pseudospin formalism, the Hamiltonian of a
two-state system coupled linearly to a boson bath can be
written as:

HSB = −∆0σx +
∑
k

~ωka
†
kak +

∑
k

gk

(
a†k + ak

)
σz ,

(1)

where ak and a†k are bosonic annihilation and creation
operators, respectively, and σx and σz are usual Pauli
matrices. In condensed matter physics this system has
attracted much interest for the past decade because it pro-
vides a simplified description of various complicated prob-
lems such as the tunneling between two potential wells,
ferroelectrics, and valence fluctuations [1] In the context
of a dissipative tunneling system, ∆0 in the Hamiltonian
represents the bare tunneling matrix element and gk the
coupling constant to the phonon mode k. When ∆0 = 0,
the system consists of a set of oscillators, displaced in one
direction when the tunneling system is in one of the two
levels and displaced in the other direction when the tun-
neling system is in the other of the two levels. Thus, there
is a twofold degenerate localized ground state with energy
E = −

∑
k g

2
k(~ωk)−1. On the other hand, when gk = 0,

the eigenstates of the system are the symmetric and an-
tisymmetric combinations of the spin states with energies
E = ±∆0. This two-state system therefore exhibits a com-
petition between the localization inherent in the interac-
tion with the phonons and the delocalization inherent in
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the tunneling. In the intermediate regime, the effect of
the phonons is to modify the tunneling matrix element
and damp the oscillations.

Despite the relatively large amount of work in the
literature, no exact (analytical or numerical) general so-
lution to the problem is yet available, except for the dis-
persionless case (ωk = ω0 for all k) [2]. There do exist,
however, analytic treatments of the model based upon
the variational principle [3–9]. An advantage of the vari-
ational method is that it always guarantees the ground-
state energy being an upper-bound of the exact one. In
other words, if the trial wavefunction is close enough to the
exact ground state, the exact ground-state energy should
be somewhere near and below the approximate one. How-
ever, the variational approach has two limitations. Firstly,
it is not trivial to perform systematic improvements to the
approximate results and construction of better trial wave-
functions requires good physical insight. The second one,
which is worth our attention, is that a wavefunction de-
termined by the variational approach may not simulate
the true ground state well, even though the energy esti-
mate is fairly accurate. This limitation is especially appar-
ent in the dissipative tunneling system. In the dispersion-
less case the variational calculations predict the existence
of a discontinuous localization-delocalization transition of
the tunneling system [7,8] whereas the existence of such
a discontinuous transition has been disproved by the ex-
act result [2]. Accordingly, it is desirable to find a method
which can provide a systematic scheme to improve the
approximation of both the ground-state energy and the
wavefunction.
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In our previous work [10] we applied the successive
coupled-cluster approximation scheme [11–16] up to the
fourth level to evaluate the ground-state energy and the
tunneling reduction factor of a two-level system coupled
to a dispersionless phonon bath. Our results were in good
agreement with the exact (numerical) results. In this pa-
per, to further improve this, we shall propose a modifica-
tion to the approximation scheme and develop an optimal
coupled-cluster approximation for the spin-boson model.
Such an optimal coupled-cluster approximation has been
recently applied to the linear E-e Jahn-Teller system [17].
The results are found to be better than those obtained
by the conventional successive coupled-cluster approxima-
tion. Furthermore, this new approach is able to give a very
tight upper bound to the ground-state energy of the sys-
tem. The outline of this paper is as follows. In the next sec-
tion we describe the basic elements of the coupled-cluster
method and apply it to the two-state system coupled to a
dispersionless boson bath within the “optimal” coupled-
cluster approximation scheme. Numerical results are dis-
cussed in Section 3. Finally, the conclusion is presented.

2 Coupled-cluster method

The basic idea of the coupled-cluster method can be out-
lined as follows [18]. The ground state of a many-body
Hamiltonian H can be expressed as

|Ψ〉 = exp(W )|Φ0〉 (2)

with |Φ0〉 being an appropriate “starting wavefunction”
which is not orthogonal to the exact ground state. The
Schrödinger equation

H|Ψ〉 = E0|Ψ〉 (3)

can be written as

H|Φ0〉 ≡ exp(−W )H exp(W )|Φ0〉 = E0|Φ0〉 (4)

where

exp(−W )H exp(W ) = H + [H,W ] +
1

2!
[[H,W ],W ] + · · ·

(5)

Since |Φ0〉 is normalized, we may write

〈Φ0|H|Φ0〉 = 〈Φ0| exp(−W )H exp(W )|Φ0〉 = E0, (6)

and by projecting equation (4) onto the states |Φn〉 which
are orthogonal to |Φ0〉 we obtain

〈Φn|H|Φ0〉 = 〈Φn| exp(−W )H exp(W )|Φ0〉 = 0. (7)

This orthogonality condition yields a series of nonlinear
coupled equations, each of which contains a finite number
of terms. The correlation operator W is determined by
solving these equations. Once W is known, the ground-
state energy and wavefunction can be obtained readily.
Hence, the problem of finding the ground-state energy and

wavefunction of the many-body system is reduced to com-
puting the operator W . Nevertheless, this is a formidable
task, and we have to resort to some approximation scheme
to solve the coupled equations.

In our previous work [10] we started by applying a
unitary displacement transformation to the Hamiltonian
HSB in equation (1) (with ωk ≡ ω0 for all k): H̃ =

exp(T †)HSB exp(T ), where T = −
∑

k gk(a†k−ak)/(~ω0).
With the “starting state” chosen to be |Φ0〉 = |vac〉| ↑〉
where |vac〉 represented the vacuum boson state and | ↑〉
the “spin-up” state, we found that the correlation opera-
tor W might in general be written as

W = O1 +O2 (8)

where

O1 = α

(
1 +

∞∑
n=1

βnA
n
+

)
σ− , O2 = α

∞∑
n=1

γnA
n
+ ,

(9)

with A+ =
∑

k gka
†
k, σ− = σx − iσy, as well as βn’s

and γn’s being the parameters to be determined by the
coupled-cluster approximation. With W having been de-
termined by the coupled-cluster approximation, we could
write down an upper-bound of the ground-state energy:

EUB =
〈Φ0|eW

†
H̃eW |Φ0〉

〈Φ0|eW
†
eW |Φ0〉

· (10)

It is not difficult to show that because of the presence of
O2, the calculation of this quantity is very complicated.
By using the fact that σ2

− = 0, the calculation may be
simplified if O2 is ignored. This is because in this case
exp(W ) = 1 + O1, which contains two terms only. This
simplication will serve as a key to the optimal coupled-
cluster approximation to be introduced in the following.

First of all we perform a variable displacement trans-
formation to the Hamiltonian HSB:

H̃(λ) ≡ exp(T †)HSB exp(T )

= −∆0σx +
∑
k

a†kak +
∑
k

g2
kλ(λ− 2σz)

+(σz − λ)
∑
k

gk(a†k + ak) (11)

where T = −λ
∑

k gk(a†k − ak) and the parameter λ is
to be determined by the variational principle. For con-
venience, we have set the energy unit to be ~ω0. As the
zeroth-level approximation, we simply choose the corre-
lation operator W to be zero. Projecting H̃(λ) onto our
“starting wavefunction” |Φ0〉 = |vac〉| ↑〉, we obtain

H̃(λ)|Φ0〉 = ε0λ(2− λ)|Φ0〉 −
∆0

2
σ−|Φ0〉

−(λ− 1)A+|Φ0〉 (12)

where ε0 = −
∑

k g
2
k. The zeroth-level coupled-cluster
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approximation of the ground-state energy is E
(0)
CCA =

ε0λ(2 − λ). To find an upper-bound of the ground-state
energy, we calculate the expectation value given by equa-
tion (10) [with H̃ replaced by H̃(λ)]:

E
(0)
UB(λ) =

〈Φ0|eW
†
H̃(λ)eW |Φ0〉

〈Φ0|eW
†
eW |Φ0〉

= 〈Φ0|H̃(λ)|Φ0〉

= E
(0)
CCA = ε0λ(2− λ) . (13)

Minimizing E
(0)
UB with respect to λ, we find that the op-

timal value of λ is 1. The improved zeroth-level coupled-
cluster approximation of the ground-state energy is there-

fore given by E
(0)
V CCA = E

(0)
UB(λ = 1) = ε0.

There are two remaining terms in equation (12). In or-
der to cancel these terms, both of them are to be included
in the correlation operator W of the first-level succesive
coupled-cluster approximation scheme. However, for the
sake of algebraic simplicity in the calculation of the en-
ergy upper-bound and the tunneling reduction factor, we
only include the operator with σ−. Therefore, in the first
level we choose W = ασ−, which represents the flip of an
“up-spin” to a “down-spin”. By using this choice, it can
be found that

exp(−W )H̃ exp(W )|Φ0〉 = E
(1)
CCA|Φ0〉+ F0W |Φ0〉

− 2αA+σ−|Φ0〉+ (1− λ)A+|Φ0〉

where E
(1)
CCA = ε0λ(2 − λ) − 2α∆0 and αF0 = −∆0(1 −

4α2)/2 − 4αε0λ. By setting F0 to be zero, a quadratic
equation of the parameter α is obtained, which can be
easily solved to give two roots. The admissible solution
is given by α = λε0/∆0 +

√
(λε0/∆0)2 + 1/4. With the

remaining terms being neglected, the first-level coupled-
cluster approximation of the ground-state energy is given

by E
(1)
CCA. Using equation (10) [with H̃ replaced by H̃(λ)],

one can obtain an upper-bound of the ground-state energy,
which is expressed as

E
(1)
UB = E

(1)
CCA = −ε0λ

2 − 2∆0

√(
λε0

∆0

)2

+
1

4
· (14)

Minimizing E
(1)
UB with respect to λ, we obtain an optimal

value, λ∗, of the variational parameter λ. Detailed calcu-
lation is not shown here. After some steps, the improved
first-level coupled-cluster approximation of the ground-

state energy is given by E
(1)
V CCA = E

(1)
UB(λ = λ∗) =

ε0{1 + [∆0/(2ε0)]2} for ∆0 ≤ 2S and −∆0 for ∆0 > 2S,
where S =

∑
k g

2
k = −ε0. Besides, we also evaluate the

tunneling reduction factor defined as

τ
V CCA

≡
〈Φ0|eW

†
eT
†
σxe

T eW |Φ0〉

〈Φ0|eW
†eW |Φ0〉

∣∣∣∣∣
λ=λ∗

. (15)

For the first level, the tunneling reduction factor is simply
given by

τ
(1)
V CCA =

4α

1 + 4α2

∣∣∣∣
λ=λ∗

. (16)

In order to improve the approximation we shall include
in W the terms necessary to cancel the remaining terms
with σ−A+: W = α(1 + β1A+)σ−. The second term of W
represents the simultaneous spin-flip and collective exci-
tation of the boson modes. By setting the coefficients of
σ−|Φ0〉 and A+σ−|Φ0〉 to be zero, a set of two equations
is obtained,

−∆0(1− 4α2)− 8αε0λ+ 2αε0(1 + λ)β1 = 0

(4α∆0 + 1− 4ε0λ)β1 − 2 = 0 , (17)

which by solving we can obtain the parameters, α and
β1, as functions of λ. The second-level coupled-cluster
approximation of the ground-state energy is given by

E
(2)
CCA = ε0λ(2−λ)− 2α∆0. By using equation (10) [with

H̃ replaced by H̃(λ)], it can be shown that an energy
upper-bound is given by

E
(2)
UB = E

(2)
CCA +

8α3∆0β
2
1ε0 − 4(1− λ)α2β1ε0

1 + 4α2(1− β2
1ε0)

· (18)

E
(2)
UB is minimized with respect to λ and thus an opti-

mal value of λ, λ∗, is obtained. The improved second-level
coupled-cluster approximation of the ground-state energy

is E
(2)
V CCA = E

(2)
UB(λ = λ∗). It is obvious that provided the

parameter β1 is not zero, there is considerable improve-
ment beyond the first-level results (see Figs. 1 and 2 as
well as Tabs. 1 to 4). By using equation (15), we have cal-
culated the second-level coupled-cluster approximation of
the tunneling reduction factor:

τ
(2)
V CCA =

4α

1 + 4α2(1− β2
1ε0)

∣∣∣∣
λ=λ∗

. (19)

In the third and the fourth levels we repeat the previous
procedure and choose the correlation operator W for the
third level as follows:

W = α(1 + β1A+ + β2A
2
+)σ− , (20)

while for the fourth level,

W = α(1 + β1A+ + β2A
2
+ + β3A

3
+ + β4A

4
+)σ− . (21)

After some straightforward, though tedious, calculations
similar to those in the second-level approximation, a set
of three (five) nonlinear coupled algebraic equations of
the parameters, α and βn’s, is obtained, for the third
(fourth) level. One needs to resort to numerical meth-
ods to solve these equations. Then, these parameters, α
and βn’s, which are functions of λ, will in turn give the
third-level (fourth-level) coupled-cluster approximation of

the ground-state energy E
(3)
CCA = ε0λ(2 − λ) − 2α∆0

[E
(4)
CCA = ε0λ(2 − λ) − 2α∆0]. Using equation (10) again

[with H̃ replaced by H̃(λ)], one obtains an upper-bound

of the ground-state energy, E
(3)
UB (E

(4)
UB), for the third

(fourth) level. The expressions will not be presented here.

Minimizing E
(3)
UB (E

(4)
UB) with respect to λ, we obtain an

optimal value of λ, λ∗. The improved third-level (fourth-
level) coupled-cluster approximation of the ground-state
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Fig. 1. Ground-state energy EV CCA versus (a)-(c): ∆0, for S = (a) 0.02; (b) 2; (c) 200; and (d)-(f): S, for ∆0 = (d) 0.01; (e) 1;
(f) 100. The straight dotted line denotes the zeroth-level result. For other curves, the dash-dotted, dashed, dotted, and solid lines
represent the first-, second-, third-, and fourth-level results, respectively. The exact result is denoted by the dash-double-dotted
line. In most regions the fourth-level result and the exact one are very close.



W.H. Wong and C.F. Lo: Optimal coupled cluster approximation 217

∆0/S

10-2 10-1 100 10

τ V
C

C
A

0.0

0.2

0.4

0.6

0.8

1.0

S=0.02

Exact

(a)

∆0/S
10-2 10-1 100 10

τ V
C

C
A

0.0

0.2

0.4

0.6

0.8

1.0

S=2

(b)

Exact

∆0/S
10-2 10-1 100 10

τ V
C

C
A

0.0

0.2

0.4

0.6

0.8

1.0

S=200

(c)

S/∆0

10-2 10-1 100 10

τ V
C

C
A

0.0

0.2

0.4

0.6

0.8

1.0

∆0=0.01

(d)

Exact

S/∆0

10-2 10-1 100 10

τ V
C

C
A

0.0

0.2

0.4

0.6

0.8

1.0

∆0=1

(e)

Exact

S/∆0

10-2 10-1 100 10

τ V
C

C
A

0.0

0.2

0.4

0.6

0.8

1.0

∆0=100

(f)

Fig. 2. Tunneling reduction factor τV CCA versus (a)-(c): ∆0, for S = (a) 0.02; (b) 2; (c) 200; and (d)-(f): S, for ∆0 = (d)
0.01; (e) 1; (f) 100. The dash-dotted, dashed, dotted, and solid lines represent the first-, second-, third-, and fourth-level results,
respectively. The exact result is denoted by the dash-double-dotted line. In most regions the fourth-level result and the exact
one are very close.
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Table 1. Ground-state energy calculated by different methods for S = (a) 0.02, (b) 2, and (c) 200. E
(4)
pre represents the fourth-

level result of our previous work (Ref. [10]). ECSQ represents the result of the variational correlated squeezed-state approach
(Ref. [8]).

Table 1a: (S = 0.02)

∆0/S E
(4)
pre/S E

(4)
V CCA/S E

(4)
OP/S Eexact/S ECSQ/S

0.01 − 1.009605 − 1.009605 − 1.009605 − 1.009608 − 1.009608

0.04 − 1.038429 − 1.038431 − 1.038429 − 1.038434 − 1.038434

0.07 − 1.067257 − 1.067259 − 1.067257 − 1.067263 − 1.067263

0.1 − 1.096087 − 1.096091 − 1.096087 − 1.096094 − 1.096094

0.4 − 1.384535 − 1.384545 − 1.384535 − 1.384553 − 1.384553

0.7 − 1.673244 − 1.673254 − 1.673245 − 1.673272 − 1.673272

1 − 1.962204 − 1.962210 − 1.962206 − 1.962242 − 1.962241

4 − 4.864013 − 4.863801 − 4.864032 − 4.864106 − 4.864103

7 − 7.783804 − 7.783292 − 7.783837 − 7.783913 − 7.783907

10 − 10.717092 − 10.716322 − 10.717135 − 10.717200 − 10.717194

Table 1b: (S = 2)

∆0/S E
(4)
pre/S E

(4)
V CCA/S E

(4)
OP/S Eexact/S ECSQ/S

0.01 − 1.000029 − 1.000029 − 1.000029 − 1.000212 − 1.000185

0.04 − 1.000470 − 1.000470 − 1.000470 − 1.001204 − 1.000760

0.07 − 1.001438 − 1.001438 − 1.001438 − 1.002728 − 1.001369

0.1 − 1.002935 − 1.002935 − 1.002935 − 1.004789 − 1.002018

0.4 − 1.047042 − 1.046945 − 1.047067 − 1.055737 − 1.015492

0.7 − 1.144520 − 1.143637 − 1.144925 − 1.164368 − 1.122562

1 − 1.295572 − 1.292487 − 1.298691 − 1.330803 − 1.309130

4 − 4.059590 − 4.059176 − 4.067179 − 4.067174 − 4.067156

7 − 7.035658 − 7.034560 − 7.037131 − 7.037131 − 7.037130

10 − 10.025166 − 10.024418 − 10.025673 − 10.025673 − 10.002567

Table 1c: (S = 200)

∆0/S E
(4)
pre/S E

(4)
V CCA/S E

(4)
OP/S Eexact/S ECSQ/S

0.01 − 1.000025 − 1.000025 − 1.000025 − 1.000025 − 1.000000

0.04 − 1.000401 − 1.000401 − 1.000401 − 1.000401 − 1.000000

0.07 − 1.001227 − 1.001227 − 1.001227 − 1.001227 − 1.000000

0.1 − 1.002503 − 1.002503 − 1.002503 − 1.002503 − 1.000000

0.4 − 1.040051 − 1.040050 − 1.040051 − 1.040051 − 1.000000

0.7 − 1.122654 − 1.122654 − 1.122659 − 1.122659 − 1.000000

1 − 1.250266 − 1.250313 − 1.250336 − 1.250336 − 1.119031

4 − 3.991809 − 4.000625 − 4.000732 − 4.000732 − 4.000732

7 − 6.998948 − 7.000357 − 7.000387 − 7.000387 − 7.000387

10 − 9.999807 − 10.000250 − 10.000264 − 10.000264 − 10.000264
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Table 2. Ground-state energy calculated by different methods for ∆0 = (a) 0.01, (b) 1, and (c) 100. E
(4)
pre represents the fourth-

level result of our previous work (Ref. [10]). ECSQ represents the result of the variational correlated squeezed-state approach
(Ref. [8]).

Table 2a: (∆0 = 0.01)

S/∆0 E
(4)
pre/∆0 E

(4)
V CCA/∆0 E

(4)
OP/∆0 Eexact/∆0 ECSQ/∆0

0.01 − 1.009804 − 1.009804 − 1.009804 − 1.009804 − 1.009804

0.04 − 1.039216 − 1.039216 − 1.039216 − 1.039216 − 1.039216

0.07 − 1.068628 − 1.068628 − 1.068628 − 1.068628 − 1.068628

0.1 − 1.098041 − 1.098041 − 1.098041 − 1.098041 − 1.098041

0.4 − 1.392187 − 1.392186 − 1.392187 − 1.392187 − 1.392187

0.7 − 1.686365 − 1.686365 − 1.686365 − 1.686366 − 1.686366

1 − 1.980574 − 1.980575 − 1.980575 − 1.980579 − 1.980579

4 − 4.924060 − 4.924286 − 4.924075 − 4.924512 − 4.924510

7 − 7.867917 − 7.869159 − 7.868055 − 7.871596 − 7.871587

10 − 10.806535 − 10.809939 − 10.807118 − 10.821663 − 10.821639

Table 2b: (∆0 = 1)

S/∆0 E
(4)
pre/∆0 E

(4)
V CCA/∆0 E

(4)
OP/∆0 Eexact/∆0 ECSQ/∆0

0.01 − 1.003341 − 1.003336 − 1.003341 − 1.003341 − 1.003341

0.04 − 1.013449 − 1.013372 − 1.013453 − 1.013453 − 1.013453

0.07 − 1.023683 − 1.023449 − 1.023700 − 1.023704 − 1.023703

0.1 − 1.034033 − 1.033564 − 1.034086 − 1.034098 − 1.034094

0.4 − 1.141923 − 1.136321 − 1.145885 − 1.146829 − 1.146511

0.7 − 1.251728 − 1.241796 − 1.271813 − 1.279103 − 1.276632

1 − 1.375042 − 1.367342 − 1.396707 − 1.436545 − 1.426780

4 − 4.067031 − 4.067009 − 4.067032 − 4.067461 − 4.000345

7 − 7.037094 − 7.037092 − 7.037094 − 7.037096 − 7.000001

10 − 10.025659 − 10.025659 − 10.025659 − 10.025659 − 10.000000

Table 2c: (∆0 = 100)

S/∆0 E
(4)
pre/∆0 E

(4)
V CCA/∆0 E

(4)
OP/∆0 Eexact/∆0 ECSQ/∆0

0.01 − 1.000050 − 1.000050 − 1.000050 − 1.000050 − 1.000050

0.04 − 1.000202 − 1.000199 − 1.000203 − 1.000203 − 1.000203

0.07 − 1.000350 − 1.000348 − 1.000361 − 1.000361 − 1.000361

0.1 − 1.000478 − 1.000498 − 1.000525 − 1.000525 − 1.000525

0.4 − 0.991066 − 1.001992 − 1.002729 − 1.002726 − 1.002725

0.7 − 1.057693 − 1.058427 − 1.058659 − 1.058663 − 1.027490

1 − 1.250598 − 1.250628 − 1.250674 − 1.250674 − 1.121511

4 − 4.062539 − 4.062539 − 4.062539 − 4.062539 − 4.000000

7 − 7.035727 − 7.035727 − 7.035727 − 7.035727 − 7.000000

10 − 10.025006 − 10.025006 − 10.025006 − 10.025006 − 10.000000
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energy is given by E
(3)
V CCA = E

(3)
UB(λ = λ∗) [E

(4)
V CCA =

E
(4)
UB(λ = λ∗)]. The tunneling reduction factor for the

third level is given by

τ
(3)
V CCA =

4α

1 + 4α2(1− β2
1ε0 + 2β2

2ε
2
0)

∣∣∣∣
λ=λ∗

, (22)

while for the fourth level,

τ
(4)
V CCA =

4α

1 + 4α2(1− β2
1ε0 + 2β2

2ε
2
0 − 6β2

3ε
3
0 + 24β2

4ε
4
0)

∣∣∣∣
λ=λ∗

.

(23)

In Figures 1–2 and Tables 1–4, one can see that our fourth-
level results are in good agreement with the exact results.
To improve our estimates, we make use of the optimal
value of the variational parameter, λ∗, to obtain an “op-
timal” Hamiltonian to which we then apply the usual
coupled-cluster approximation.

Now we apply the usual coupled-cluster approximation
to the following “optimal” Hamiltonian H̄ which is defined
as

H̄ ≡ eT
†(λ∗)HSBe

T (λ∗)

= −∆0σx +
∑
k

a†kak +
∑
k

g2
kλ
∗(λ∗ − 2σz)

+(σz − λ
∗)
∑
k

gk(a†k + ak) . (24)

This is identical to equation (11) but with the variational
parameter λ replaced by the fixed value λ∗. It is expected
that our results will be good for two reasons. Firstly, since
λ∗ is determined by the variational principle, the optimal
Hamiltonian somehow provides us a good starting point
in terms of energy. Secondly, since in the usual coupled-
cluster approximation the restriction on W is relaxed, one
may include those terms without σ−, and thus the wave-
function should be more accurate.

In the fourth level the correlation operator W is given
by

W = α(1 + β1A+ + β2A
2
+ + β3A

3
+ + β4A

4
+)σ−

+α(γ1A+ + γ2A
2
+). (25)

After some straightforward calculations, a set of seven
nonlinear coupled algebraic equations of the parameters,
α, βn’s, and γn’s, is obtained. Numerical methods are
needed in solving these equations. Then, these param-

eters will in turn give the ground-state energy E
(4)
OP =

ε0λ
∗(2−λ∗)− 2α∆0− ε0(1−λ∗)αγ1. We have also calcu-

lated the tunneling reduction factor which is given by

τ
(4)
OP =

〈Φ0|eW
†
eT
†(λ∗)σxe

T (λ∗)eW |Φ0〉

〈Φ0|eW
†
eW |Φ0〉

· (26)

The final expression of the tunneling reduction factor is
lengthy and will not be presented here. The numerical
results are presented in Tables 1 to 4.

3 Discussion

In Figure 1 we show the upper bound of the ground-state
energy for different levels of the coupled-cluster approxi-
mation. In (a)-(c) we consider S fixed to values 0.02, 2,
and 200, and let the bare tunneling parameter ∆0 vary.
In (d)-(f), we let S vary while fixing ∆0 to values 0.01, 1,
and 100. We expect that if ∆0 is small, then the two-state
system is mainly controlled by the interaction with bosons
and thus E ≈ −S. On the other hand, if ∆0 is large, then
the energy is E ≈ −∆0. Except for the zeroth level, the
results of all levels agree with our expectation in these
two limiting cases. For nearly the whole parameter space,
our estimates of energy show apparent convergence, and
our results show good agreement with the exact results.
However, in the intermediate region where ∆0 ≈ S ≈ ~ω0

convergence is still not trivial and discrepancy between
the fourth-level result and the exact one is noticeable.

In Figure 2 we show the coupled-cluster approxima-
tion of the tunneling reduction factor. The results are ar-
ranged in the same way as that of Figure 1. The fourth-
level results have already shown good agreement with the
exact results. One important point worthy of noticing is
that there is no evidence of any discontinuous localization-
delocalization transition. This is consistent with the exact
result. This observation is far different from those results
obtained by the conventional coherent-state or squeezed-
state approaches which predict the existence of a discon-
tinuity in the reduction factor in certain cases [7]. With a
correlated squeezed-state as an improved trial wavefunc-
tion [8], although in some cases the discontinuity is re-
moved, it still persists in the large-coupling and large-∆0

regimes. It shows that these conventional trial wavefunc-
tions are incapable of representing the ground state of the
system. The agreement of our result with the exact result
in this aspect suggests that our approach is a practical tool
which can properly deal with the ground-state properties
of spin-boson systems. It not only takes care of the accu-
racy of the ground-state energy estimate, but also that of
the wavefunction estimate.

Our results of the optimal coupled-cluster approxima-

tion in Section 2, E
(4)
OP and τ

(4)
OP , are qualitatively the same

as those discussed above. In order to have a clearer com-
parison between our results of the optimal coupled-cluster
approximation and those of the other methods, we have
tabulated the results of the ground-state energy in Ta-
bles 1 and 2, and also the tunneling reduction factor in
Tables 3 and 4. In each table the rightmost column is
the result of the variational correlated-squeezed state ap-
proach (CSQ) [8]. The results of our previous work [10] by
using the conventional successive coupled-cluster approx-
imation are shown in Tables 1 to 4 as well.

E
(4)
OP and the exact ground-state energy Eexact show

excellent agreement. Even in the intermediate region
where ∆0 ≈ S ≈ ~ω0, their difference is only a few per-
cents. For other cases, the agreement is far better than
this. In some cases, for example, ∆0 = 100 and S/∆0 = 1,
4, or 7, the agreement is up to seven significant figures.
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Table 3. Tunneling reduction factor calculated by different methods for S = (a) 0.02, (b) 2, and (c) 200. τ
(4)
pre represents

the fourth-level result of our previous work (Ref. [10]). τCSQ represents the result of the variational correlated squeezed-state
approach (Ref. [8]).

Table 3a: (S = 0.02)

∆0/S τ
(4)
pre τ

(4)
V CCA τ

(4)
OP τexact τCSQ

0.01 0.960455 0.960820 0.960820 0.960820 0.960820

0.04 0.960732 0.960912 0.960910 0.960910 0.960910

0.07 0.960810 0.961004 0.961000 0.961000 0.961000

0.1 0.960869 0.961095 0.961090 0.961089 0.961089

0.4 0.961337 0.961992 0.961969 0.961968 0.961968

0.7 0.961776 0.962858 0.962820 0.962819 0.962818

1 0.962204 0.963694 0.963643 0.963641 0.963641

4 0.966003 0.970713 0.970579 0.970575 0.970574

7 0.969115 0.975883 0.975723 0.975719 0.975719

10 0.971709 0.979800 0.979638 0.979635 0.979635

Table 3b: (S = 2)

∆0/S τ
(4)
pre τ

(4)
V CCA τ

(4)
OP τexact τCSQ

0.01 0.002935 0.005869 0.005869 0.024195 0.018644

0.04 0.011739 0.023476 0.023478 0.041910 0.019171

0.07 0.020543 0.041082 0.041089 0.059738 0.020944

0.1 0.029349 0.058685 0.058707 0.077684 0.022363

0.4 0.117606 0.234452 0.235706 0.264149 0.126406

0.7 0.206457 0.409805 0.415357 0.460675 0.523667

1 0.295572 0.584717 0.596597 0.643119 0.701814

4 0.764898 0.986258 0.981822 0.981842 0.981868

7 0.862237 0.995255 0.994472 0.994473 0.994473

10 0.902517 0.997623 0.997360 0.997360 0.997361

Table 3c: (S = 200)

∆0/S τ
(4)
pre τ

(4)
V CCA τ

(4)
OP τexact τCSQ

0.01 0.002503 0.005006 0.005006 0.005006 0.000000

0.04 0.010013 0.020025 0.020025 0.020025 0.000000

0.07 0.017522 0.035044 0.035044 0.035044 0.000000

0.1 0.025031 0.050063 0.050063 0.050063 0.000000

0.4 0.100126 0.200251 0.200256 0.200256 0.000000

0.7 0.175221 0.350439 0.350465 0.350468 0.000000

1 0.250266 0.500627 0.500704 0.500724 0.714052

4 0.747952 0.999844 0.999780 0.999780 0.999780

7 0.856993 0.999949 0.999940 0.999940 0.999940

10 0.899981 0.999975 0.999972 0.999972 0.999972
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Table 4. Tunneling reduction factor calculated by different methods for ∆0 = (a) 0.01, (b) 1, and (c) 100. τ
(4)
pre represents

the fourth-level result of our previous work (Ref. [10]). τCSQ represents the result of the variational correlated squeezed-state
approach (Ref. [8]).

Table 4a: (∆0 = 0.01)

S/∆0 τ
(4)
pre τ

(4)
V CCA τ

(4)
OP τexact τCSQ

0.01 0.999804 0.999808 0.999808 0.999808 0.999808

0.04 0.999216 0.999231 0.999231 0.999231 0.999231

0.07 0.998628 0.998655 0.998655 0.998655 0.998655

0.1 0.998041 0.998080 0.998079 0.998079 0.998079

0.4 0.992187 0.992340 0.992339 0.992339 0.992339

0.7 0.986365 0.986634 0.986630 0.986630 0.986630

1 0.980574 0.980960 0.980953 0.980953 0.980952

4 0.924060 0.925998 0.925896 0.925882 0.925879

7 0.867917 0.874186 0.873904 0.873798 0.873782

10 0.806535 0.825464 0.824870 0.824552 0.824508

Table 4b: (∆0 = 1)

S/∆0 τ
(4)
pre τ

(4)
V CCA τ

(4)
OP τexact τCSQ

0.01 0.993341 0.997780 0.997770 0.997770 0.997770

0.04 0.973449 0.991151 0.990992 0.990991 0.990992

0.07 0.953683 0.984567 0.984078 0.984073 0.984076

0.1 0.934033 0.978029 0.977027 0.977013 0.977021

0.4 0.741923 0.915240 0.898773 0.897727 0.898459

0.7 0.551728 0.853480 0.806590 0.800423 0.805526

1 0.375042 0.713071 0.695424 0.685294 0.701401

4 0.067031 0.134009 0.134107 0.134732 0.354852

7 0.037094 0.074184 0.074192 0.074195 0.000008

10 0.025659 0.051318 0.051319 0.051320 0.000000

Table 4c: (∆0 = 100)

S/∆0 τ
(4)
pre τ

(4)
V CCA τ

(4)
OP τexact τCSQ

0.01 0.990050 0.999950 0.999950 0.999950 0.999950

0.04 0.960202 0.999802 0.999794 0.999794 0.999794

0.07 0.930350 0.999654 0.999627 0.999627 0.999627

0.1 0.900478 0.999505 0.999447 0.999447 0.999447

0.4 0.591066 0.998022 0.995703 0.995737 0.995739

0.7 0.357693 0.716855 0.717462 0.718011 0.876268

1 0.250598 0.501256 0.501413 0.501455 0.714044

4 0.062539 0.125078 0.125079 0.125079 0.000000

7 0.035727 0.071454 0.071454 0.071454 0.000000

10 0.025006 0.050013 0.050013 0.050013 0.000000



W.H. Wong and C.F. Lo: Optimal coupled cluster approximation 223

However, we should be careful that E
(4)
OP is not necessar-

ily an upper-bound of the exact value. For instance, in

the case of S = 2 and ∆0/S = 4, E
(4)
OP is even lower than

the exact value. The optimal coupled-cluster approxima-

tion of the tunneling reduction factor τ
(4)
OP also shows very

good accuracy compared with the exact result.
One can observe that the CSQ results of the ground-

state energy and the tunneling reduction factor are even
better than those of the optimal coupled-cluster approxi-
mation in the region where ∆0 or S are small. However,
in the region where S and ∆0 are both large, CSQ no
longer works properly. Due to its incapability of accu-
rately simulating the ground state, it predicts a discontin-
uous localization-delocalization transition which is absent
in the exact result. On the contrary, the optimal coupled-
cluster approximation works well in the whole parameter
space. It is surprising to note that in the region where CSQ
results deteriorate, the results of the optimal coupled-
cluster approximation agree with the exact results with

high precision. Furthermore, in many cases E
(4)
OP and τ

(4)
OP

are closer to the exact values than the results of the con-
ventional successive coupled-cluster approximation. This
significant improvement (especially in the estimate of the
tunneling reduction factor τ) is expected because the cor-
relation operator (and hence the wavefunction) is more ac-
curate in the optimal coupled-cluster approximation than
that in the conventional successive coupled-cluster approx-
imation.

4 Conclusion

In this paper we have proposed the optimal coupled-
cluster approximation to investigate the ground-state
properties of a two-state system which is coupled linearly
to a dispersionless boson bath. With this approxima-
tion scheme we can systematically improve not only
the estimate of the ground-state energy but also the
ground-state wavefunction. This new approach is also
able to give a very tight upper bound of the ground-state
energy of the system. Up to the fourth level of the
optimal coupled-cluster approximation, our results of
the ground-state energy and the tunneling reduction
factor show excellent agreement with the exact results.
We have found that the system shows no sign of the
discontinuous localization-delocalization transition. In
other words, there is no abrupt change in the value of
the tunneling reduction factor as the coupling strength
or the bare tunneling matrix element varies. This
agrees with the exact result but contradicts the results
of the conventional variational approaches. Hence, our

results seem to suggest that the optimal coupled-cluster
approximation is a practical tool for studying the ground-
state properties of spin-boson systems. Furthermore, if
an additional variable squeezing or correlated squeez-
ing transformation is also performed to the Hamiltionian
HSB, then a better “optimal” Hamiltonian will be ob-
tained, the use of which may allow better ground-state
energies and wavefunctions to be obtained. The math-
ematical treatment in this work is simple and could be
easily extended to the studies of other fermion-boson in-
teracting systems.
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